SLDR-DL: A Framework for SLD-Resolution with Deep Learning
نویسنده
چکیده
This paper introduces an SLD-resolution technique based on deep learning. This technique enables neural networks to learn from old and successful resolution processes and to use learnt experiences to guide new resolution processes. An implementation of this technique is named SLDR-DL. It includes a Prolog library of deep feedforward neural networks and some essential functions of resolution. In the SLDR-DL framework, users can define logical rules in the form of definite clauses and teach neural networks to use the rules in reasoning processes.
منابع مشابه
SLDR-Resolution: Parallelizing Structural Recursion in Logic Programs
We introduce a new operational semantics, SLDR-resolution, for a class of recursive logic programs. We establish the soundness and completeness of SLDR-resolution by showing that one SLDR-resolution inference is equivalent to n 1 SLD-resolution inferences. SLDR-resolution facilitates parallel processing of recursive programs and can exploit parallelism that is not exploitable in SLD-resolution....
متن کاملA Hybrid Algorithm based on Deep Learning and Restricted Boltzmann Machine for Car Semantic Segmentation from Unmanned Aerial Vehicles (UAVs)-based Thermal Infrared Images
Nowadays, ground vehicle monitoring (GVM) is one of the areas of application in the intelligent traffic control system using image processing methods. In this context, the use of unmanned aerial vehicles based on thermal infrared (UAV-TIR) images is one of the optimal options for GVM due to the suitable spatial resolution, cost-effective and low volume of images. The methods that have been prop...
متن کاملA Deep Model for Super-resolution Enhancement from a Single Image
This study presents a method to reconstruct a high-resolution image using a deep convolution neural network. We propose a deep model, entitled Deep Block Super Resolution (DBSR), by fusing the output features of a deep convolutional network and a shallow convolutional network. In this way, our model benefits from high frequency and low frequency features extracted from deep and shallow networks...
متن کاملDeep learning-based CAD systems for mammography: A review article
Breast cancer is one of the most common types of cancer in women. Screening mammography is a low‑dose X‑ray examination of breasts, which is conducted to detect breast cancer at early stages when the cancerous tumor is too small to be felt as a lump. Screening mammography is conducted for women with no symptoms of breast cancer, for early detection of cancer when the cancer is most treatable an...
متن کاملIntegration of Deep Learning Algorithms and Bilateral Filters with the Purpose of Building Extraction from Mono Optical Aerial Imagery
The problem of extracting the building from mono optical aerial imagery with high spatial resolution is always considered as an important challenge to prepare the maps. The goal of the current research is to take advantage of the semantic segmentation of mono optical aerial imagery to extract the building which is realized based on the combination of deep convolutional neural networks (DCNN) an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1705.02210 شماره
صفحات -
تاریخ انتشار 2017